
Iranian Journal of Electrical & Electronic Engineering, Vol. 1, No. 1, January 2005.  11

Subspace system identification 
 
 
J. Poshtan and H. Mojallali 
 

Abstract: We give a general overview of the state-of-the-art in subspace system 
identification methods. We have restricted ourselves to the most important ideas and 
developments since the methods appeared in the late eighties. First, the basis of linear 
subspace identification are summarized. Different algorithms one finds in literature (Such 
as N4SID, MOESP, CVA) are discussed and put into a unifying framework. Further, a 
comparison between subspace identification and prediction error methods is made on the 
basis of computational complexity and precision of methods by applying them to a glass 
tube manufacturing process. 
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1 Introduction1 
Mathematical models of dynamical systems are used for 
analysis, simulation, prediction, optimization, 
monitoring, fault detection, training and control. There 
are several approaches to generate a model of a system. 
One could for instance start from first principles, such 
as writing down basic physical or chemical laws that 
generate behavior of the system. This so called  white 
box approach works for simple examples, but its 
complexity increases rapidly for real-world systems. In 
some cases, equations of the system are known up to 
within some unknown parameters, which are estimated 
using some parameter-estimation method (gray box 
modelling). Both, two aforementioned techniques 
require the extraction of system equations which  is 
difficult in MIMO systems due to system variables 
interaction and often  leads to several trial and error 
stages. Another approach is provided by system 
identification, in which measurements or observations 
are first collected from the system, and then modeled 
using a so called black-box identification approach. 
Such an approach basically consists of first defining a 
parameterization of the model, and then determining the 
model parameters in such a way that the measurements 
are explained as accurately as possible by the model. In 
system identification, parameterization and model 
selection are important. [1], [2], [9], [10], [11] represent 
some techniques for model parameterization. [8] 
represents a kind of parameterization called 
observability model, in which the user should ultimately 
select  a desired model from model sets. All of proposed 
techniques, with their advantages and disadvantages, for 
starting require prior knowledge such as system order. 
Therefor, usage of the these  techniques take a lot of 
time and operations and several trial and error stages 
must be done. The beginning of the 1990s witnessed the 
birth of a new type of linear system identification 
algorithms, called subspace methods. Subspace methods 
basically originate in a good combination between 
system theory, geometry and numerical linear algebra. It 
is shown  that subspace methods calculate a good state 
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space model without any priori knowledge of the 
system. This paper consists of the following sections: 
First of all, we briefly review the main concepts and 
algorithms of linear subspace system 
identification(section2). Different methods found in  
literature are presented and put into a unifying 
framework. Further we comment on the comparison 
between prediction error methods and subspace 
identification methods by applying them to a glass tube 
manufacturing process. 
 
2 An overview of the theory[6] 
Models and/or systems can be roughly divided into 
classes, such as linear and nonlinear, time-invariant or 
time-varying, discrete-time or continuous-time, with 
lumped or with distributed parameters, etc. While at 
first sight, the class of linear time-invariant models with 
lumped parameters seems to be rather restricted, it turns 
out in practice that many real-life input-output 
behaviors of practical, industrial processes can be 
approximated very well by such models. Linear 
subspace identification methods are connected with 
systems and models of the form: 
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The vectors 1m
k Ru ×∈ and 1l

k Ry ×∈  are the 
measurements at time instant k  of respectively the 
m inputs and l outputs of the process. The vector kx is 
the state vector of the process at discrete time instant k , 

1l
k Rv ×∈ and 1n

k Rw ×∈ are unobserved vector signals, 
called the measurement noise and the process noise, 
respectively. It is assumed that they are zero mean, 
stationary white noise vector sequences and 
uncorrelated with the inputs ku . nnRA ×∈ is the system 
matrix, mnRB ×∈ is the input matrix, nlRC ×∈ is the 
output matrix while mlRD ×∈ is the direct feed-through 
matrix. The matrices nnRQ ×∈ , lnRS ×∈ and llRR ×∈ are 
the covariance matrices of the noise sequences kw and 

kv . In subspace identification, it is typically assumed 
that the number of available data points goes to infinity, 
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and that the data is ergodic. We are now ready to state 
the main problem treated: 
 
Given a number of measurements of the input ku and 
the output ky generated by the unknown system (1)-(3); 
 
Determine the order n  of the unknown system, the 
system matrices A , B , C , D  up to within a similarity 
transformation, and the matrices Q , S , .R  
In this section, we will first describe the general 
concepts in subspace identification . Further, the two 
basic steps all subspace methods consist of are 
presented. Finally, the different algorithms existing in 
the literature are analyzed in a unifying framework. 
Subspace identification algorithms always consist of 
two steps. The first step makes a projection of certain 
subspaces generated from the data, to find an estimate 
of the extended observability matrix and/or an estimate 
of the states of the unknown system. The second step 
then retrieves the system matrices from either this 
extended observability matrix or the estimated states. 
We will come back to this in section 2.2.2, where we 
describe different subspace identification methods and 
fit them into a unifying framework. 
 
2.1 The subspace structure of linear systems 
The following input-output matrix equation[4], played a 
very important role in the development of subspace 
identification: 

ff
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d
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The different terms in this equation are now defined: 
The extended observability matrix iΓ  is defined as: 
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The deterministic lower block triangular Teoplitz matrix 
d
iH is defined as: 
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The stochastic lower block triangular Teoplitz matrix 
s
iH is defined as: 
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The input and output block Hankel matrices are defined 
as: 
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where we assume that ∞→j throughout the paper. For 
convenience and short hand notation, we call: 

1i2if1i0p
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where the subscript p and f  denote respectively the 
past and the future. The matrix containing the inputs 

pU and outputs pY will be called pW : 
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The block Hankel matrix formed with the process noise 
kw and the measurement noise kv are defined 

respectively as 1i0M −  and 1i0N −  in the same way. Once 
again, we define for short hand notation: 
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We finally denote the state sequence iX as: 

)xxxx(X 1ji2i1iii −+++=   (10) 

Definition(Orthogonal projection) 
The orthogonal projection of  the row space of A  into 
the row space of B  is denoted by BA  and defined as: 

BABB
A +=  

⊥BA is the projection of the row space of A into ⊥B , 
the orthogonal complement of the row space of B , for 
which we have 

B
AA

B
A −=⊥  

2.2 The two basic steps in subspace identification 
In this section we will explore the two main steps that 
all subspace algorithms consist of (see Figure 1). The 
first step always performs a weighted projection of the 
row space of the previously defined data Hankel 
matrices. From this projection, the observability matrix 

iΓ  and/or an estimate iX~  of the state sequence iX can 
be retrieved. In the second step, the system matrices A , 
B , C , D  and Q , S , R are determined. As shown in 
Figure 1, a clear distinction can be made between the 
algorithms that use the extended observability matrix 

iΓ to obtain the state space matrices, and those using the 
estimated state sequence iX~ . 
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Fig. 1 Two main steps in subspace algorithms. 
 
First step: finding the state sequence and/or the extended 
observability matrix 
In this section, we show how an orthogonal projection 
with data block Hankel matrices forms one of the key 
elements in subspace system identification algorithms. 
All subspace methods start from the previously 
presented matrix input-output equation (4), from which 
it can be observed that the block Hankel matrix 
containing the future outputs fY is related in a linear 
way to the future input block Hankel matrix fU  and the 
future state sequence iX . The basic idea of subspace 
identification now is to try to recover the iiXΓ -term of 
this equation. This is a particularly interesting term 
since either the knowledge of iΓ  or iX  leads to the 
system parameters (see next section). Moreover, iiXΓ is 
a rank-deficient term(of rank n , i.e. the system order!) 
which means that once iiXΓ is known, iΓ and iX  can be 
simply found from a SVD. 
How can an estimate of  iiXΓ be extracted from the 
above equation? For this we need the previously defined 
notion of orthogonal projection. By projecting the row 
space of fY into the orthogonal complement ⊥

fU of the 
row space of fU we find: 
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Since it is assumed that the noise is uncorrelated with 
the inputs, we have that: 
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The following step consists in weighting this projection 
to the left and the right with some matrices 1W and 2W : 
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Of course, the inputs fU and the weighting matrices 
1W and 2W cannot be chosen arbitrarily but they should 

satisfy the following 3 conditions: 

1. ii1 rank).W(rank Γ=Γ  (11) 

2. )W.
U

X(rankXrank 2
f

i
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3. 0W).NMH.(W 2ff
s
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The first two conditions guarantee that the rank-
n property of iiXΓ is preserved after projection onto 

⊥
fU and weighting by 1W and 2W . The third condition 

expresses that 2W  should be uncorrelated with the noise 
sequences kw and kv . 
If these three conditions are satisfied, we have that: 
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The following important properties can now be stated: 
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Obviously, the singular value decomposition of the 
matrix iO  delivers the order n of the system. Moreover, 
from the left singular vectors corresponding to non-zero 
singular values, the extended observability matrix iΓ can 
be found (up to a similarity transformation), whereas the 
right singular vectors contain information about the 
states iX . If the weighting matrix 2W is such that it has 
j coloumns, the matrix 

2
f

i
i W.

U
XX~ ⊥=  (15) 

can indeed be considered as an estimate of the state 
sequence iX . It was shown [11] that, for a particular 
choice of 2W , iX~  is a kalman filter estimate of iX . One 
might wonder about the effect of choosing the weights 

1W and 2W  in (14). Without going into details here, it 
suffices to say that, by choosing appropriate weighting 
matrices 1W and 2W , all subspace algorithms for LTI 
systems can be interpreted in the above framework, 
including N4SID, MOESP and CVA (see Table 1). At 
this point, a clear distinction can be made between the 
algorithms that start from iΓ to find the system matrices 
A , B , C , D (MOESP) and those that use 

iX~ (N4SID,CVA). 
 
Second step: finding the state space model 
We have found how an estimate iX~ of the state 
sequence iX and the extended observability matrix 

iΓ can be retrieved from the weighted projection (14) of 
the future outputs fY into the orthogonal complement of 
future inputs fU . In what follows, we discuss the two 
classes of subspace identification algorithms mentioned 
above. The first class uses the state estimates iX~ (the 
right singular vectors) to find the state space model. 
Algorithms that follow this approach are N4SID and 
CVA. The second class of algorithms uses the extended 
observability matrix iΓ (i.e. the left singular vectors) to 
find the model parameters.  
 
 
 

iΓ  
 

Input-output 
data ku , ky  

iX~  

System matrices 
R,S,Q,D,C,B,A

 

STEP 1 

STEP 2 
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Table 1 This table interprets different existing subspace identification algorithms in a unifying framework 

Acronym 1W  2W  

N4SID liI  pfp W)U/W( +⊥  

CVA 2/1T
ffff ])U/Y).(U/Y[( −⊥⊥  2/1

fpfp )]U/W.()U/W[( −⊥+⊥  

MOESP liI  )U/W.()U/W( fpfp
⊥+⊥  

 
Algorithms using an estimate iX~  of the state sequene 
The estimated state sequence iX~ can be interpreted as 
the solution of a bank of Kalman filters, working in 
parallel on each of the columns of the matrix pW . 
Besides iX~ , we also need the state sequence 1iX~ + . This 
sequence can be obtained from a 1iO +  projection and 
weights 1W , 2W  in (14) based on i0W , 1i21iY −+ and 

1i21iU −+ (see section 2.1 for notations). This leads to the 
sequence 1iO + and the Kalman filter states 1iX~ + : 
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System model: The state space matrices C,B,A and 
D can now be found by solving a simple set of over-
determined equations in a least-squares sense: 
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with obvious definitions for wρ and vρ as residual 
matrices. This reduces to 
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Noise model: The noise covariance S,Q and R can be 
estimated from the residuals wρ and vρ as: 
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where the index i  denotes a bias induced for finite i , 
which disapears as ∞→i . As is obvious by 
construction , this matrix is guaranteed to be positive 
semi-definite. This is an important feature since only 
positive definite covariances can lead to a physically 
realizable noise model. 
 
Algorithms using the extended observability matrix 

iΓ  
contrary to the previous class of algorithms, here the 
system matrices are determined in two separate steps: 
first, A and C are determined from iΓ while in a second 
step B and D are computed. 
 
Determination of A  and C  
The matrices A  and C  can be determined from the 
extended observability matrix in different  ways. All the 
methods, make use of the shift invariance property of 
the matrix iΓ , which implies that (Kung,1978)( 
following Matlab notations): 

( ):,l:1C,.A iii Γ=ΓΓ= +  

Determination of B and D 
After the determination of A and C , the system 
matrices B and D have to be computed. Here we will 

only sketch one possible way to do so. From the input-
output equation (4), we find that: 
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where li)nli(
i R ×−⊥ ∈Γ  is a full row rank matrix satisfying 

0. ii =ΓΓ⊥ . Here once again the noise is cancelled out 
due to the assumption that the input ku is correlated 
with the noise. Observe that with known matrices 
A , C , ⊥Γi , fU and fY , this equation is linear in B and 
D . 
 
3 An industrial glass tube manufacturing 
process identification 
3.1 Process description [4] 
The outline of the process is shown in Figure 2. By 
indirect electric heating the glass is melted and it flows 
down through a ring shaped hole along a mandrill. 
Shaping of the tube takes place at, and just below the 
end of the mandrill. The glass tube is pulled down due 
to gravity and a drawing machine. Two measures of 
dimention, wall thickness and diameter of the tube, are 
the most important quantities to be regulated (and thus 
to be identified), hence they are the outputs of the 
process. The mandrill gas pressure and the drawing 
speed can affect the wall thickness and the diameter 
most directly and easily, so they are good candidates for 
inputs. Other variables such as the power supplied to 
melt the glass, the pressure in the melting vessel and the 
room temperature will be considered as disturbances. 
Therefore the process can be modeled as a 2-input 2-
output process with disturbances (combined 
deterministic-stochastic model). For the purpose of 
identification, the process was excited with an 
orthogonal white PRBN sequence. The two inputs and 
outputs were recorded. The diameter is measured in two 
orthogonal directions and averaged out. The wall 
thickness is measured in four directions in a plane, and 
once again, these measurements are averaged out. The 
input and output signals are scaled so that the original 
signals can not be retrieved. The input and output 
signals are made zero mean, filtered with a third order 
low pass butterworth filter with a cutoff frequency equal 
to 10/)2/f( s  where sf is the sampling frequency. The 
outputs are then detrended, as typically the thickness 
has a trend in it. Then the delays between the inputs and 
outputs are determined through a simple correlation 
analysis. The signals are corrected for these delays.  The 
first 500 samples are neglected (transiant effects). 
 
3.2. Subspace Identification vs. Prediction Error 
Method  
In this section, we will compare the identification 
results obtained using the three subspace algorithms 
with the results from the classical identification techniqe 
(PEM). We used signals of 1326 samples from this 
system , The first 900 samples for identification and the 
remaining 426 samples for validation. The results are 
summarized in table 2. For subspace algorithms, the 
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order can be determined through the inspection of a 
singular value plot (Figure 3).  In noise-free  case, the 
model order is equal to the number of nonzero singular 
values [4]. In a noisy case such as our process, however, 
the model order was chosen to be equal to 8 resulting 
the least prediction error. Among the three subspace 
algorithms, CVA led to the least prediction error for this 
case study. For using PEM classical identification, an 
initial model is required. Therefore, for this purpose 
PEM was initialized with the model from N4SID 
algorithm. Input signals used for identification are 
shown in Figure 4. In this Figure, measured and 
predicted output signals for CVA model are shown. It 
should be noted that for the prediction of the output 
signal, a Kalman fiter was used for the following model: 

kkkk

kkk1k

eDuCxy
KeBuAxx

++=
++=+  

Meanwhile, the error related to a deterministic 
prediction is shown in table 2. 

 
Fig. 2 The glass tube production process 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Singular values as a function of the model order. The 
model order is chosen to be 8. 
 
4 Conclusion 
In this paper, we have given a brief overview of the 
linear subspace system identification methods. We 
made a clear distinction between methods using the 
states and methods statrting from the observability 
matrix to recover the system parameters. Further, a 
direct comparison was made between subspace 
algorithms and PEM identification method on the basis 
of accuracy and computation time. Therefore, all 
methods were applied to a real-life process. The 
conclusion is that subspace methods calculate a state 
space model without a-priori fixed parametrization, and 
this is a fast and numerically reliable way. Subspace 
methods and prediction error methods are 
complementary in the sense that a good initial model 
can be quickly obtained with subspace methods while a 
further optimization of parameters (if possible) can be 
done with prediction error methods. 
 
 
 

 
Table 2 Comparison of three subspace algorithm and PEM classical identification. The second row indicates the chosen order. The 
third row indicates the number of block rows that is used in the past and future block Hankel matrices of subspace algorithms. The 
fourth row indicates number of iterations related to each algorithm. The fifth  row shows the number of floating point operations. The 
sixth shows consuming time for these algorithms in second. The seventh row is the errors (in percent) between the measured 
validation outputs  and the simulated outputs using only the deterministic subsystem. The eighth row shows the error between 
measured and kalman filter one step ahead prediction. With i
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algorithm N4SID MOESP CVA PEM 
order 8 8 8 8 
Number of block rows 20 20 20 20 
iterations - - - 10 
flops 61980981 81280318 63415534 314708169 
time 4 5 4 25 
Prediction error(deterministic) 30.8 29.1 43.7 34.4 
Prediction error(Kalman filter) 14 13.5 13 14 
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Fig. 4 Input and output signals used for identification. The inputs are drawing speed and mandrill pressure. The outputs are diameter 
and thickness. The dotted lines shows one step ahead predicted outputs from CVA model. Prediction errors have shown in figure. 
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